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We study the role of electronic correlation in a disordered two-dimensional model by using a variational
wave function that can interpolate between Anderson and Mott insulators. Within this approach, the Anderson-
Mott transition can be described both in the paramagnetic sector and in the magnetic sector. In the latter case,
we find evidence for the formation of local magnetic moments that order before the Mott transition. The charge
gap opening in the Mott insulator is accompanied by the vanishing of the limq→0�nq��n−q� �the bar denoting the
impurity average�. The role of a frustrating �second-neighbor� hopping is also discussed, with a particular
emphasis to the formation of metastable spin-glass states.
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The combined action of Coulomb repulsion and disorder
is known to heavily influence the physics of electron
systems.1 Recently, the observation of metallic behavior in
high-mobility two-dimensional electron-gas devices2 has
opened new perspectives in this subject, suggesting the pos-
sibility that a metallic behavior could be stabilized by a
strong electron-electron interaction in two dimensions, in
spite of the standard scaling theory of Anderson
localization.3 Such a proposal has been put forward theoreti-
cally by several weak-coupling renormalization-group
approaches.4 A common feature of the above calculations is
the crucial role played by the spin fluctuations that grow
large as the renormalization-group procedure is iterated. This
tendency has been interpreted as signaling the emergence
either of local moments or, in the continuum, of a ferromag-
netic instability.5 In a lattice, the latter one is likely substi-
tuted by a magnetic instability at some wave vector deter-
mined by the topology of the lattice and the form of the
hopping elements.

Apart from the debated issue of a metal-insulator transi-
tion in two-dimensional high-mobility devices,6–8 there are
less controversial systems where the role of strong correla-
tions concomitantly with disorder is well testified. Emblem-
atic is the case of Si:P and Si:B,9 three-dimensional materials
that undergo a bona fide metal-insulator transition. Here, the
randomly distributed impurities form a narrow band within
the semiconducting gap. Since the local Coulomb repulsion
is sizable compared to the width of the impurity band,
this system is particularly suitable for studying the interplay
between disorder and interaction. Indeed, clear signatures
of local magnetic moments are found in several thermo-
dynamic quantities.10–13 Theoretically, the interplay of disor-
der and interaction is a difficult question. Any approach
based on single-particle descriptions, such as unrestricted
Hartree-Fock,14,15 can uncover the emergence of local mo-
ments only if spin-rotational symmetry is explicitly broken,
introducing spurious effects that can be dealt with using fur-
ther approximate schemes.16 More sophisticated approaches,
such as those based on dynamical mean-field theory,17 can in
principle manage without magnetism,18–20 but they usually
miss important spatial correlations.

Here, we extend the variational approach that has been

successfully used to describe the Mott transition in finite-
dimensional clean systems.21 We show that, for a half-filled
disordered Hubbard model on a square lattice and when the
variational wave function is forced to be paramagnetic, the
Anderson-to-Mott insulator transition exists and it is continu-
ous. When magnetism is allowed, we find two successive
phase transitions: from a compressible paramagnetic Ander-
son insulator with local moments to a compressible magnetic
Anderson insulator and then to an incompressible magnetic
Mott insulator. Unlike previous unrestricted Hartree-Fock15

or Monte Carlo calculations,22 we do not find any clear evi-
dence of an intermediate metallic behavior.

We consider a half-filled Hubbard model on a square lat-
tice with on-site disorder

H = �
i,j,�

ti,jci,�
† cj,� + H.c. + �

i

��ini + Uni,↑ni,↓� , �1�

where ci,�
† �ci,�� creates �destroys� one electron at site i with

spin �, ni,�=ci,�
† ci,�, and ni=��ni,�. �i are random on-site

energies chosen independently at each site and uniformly
distributed in �−D ,D�. ti,j are the hopping parameters that we
will consider limited either to nearest-, tij =−t, or to next-
nearest-neighbor, tij =−t�, sites. In the calculations, we will
consider 45° rotated clusters with N=2n2 sites, n being an
odd integer, and periodic boundary conditions, so that the
noninteracting ground state is always nondegenerate at half
filling.

Following the approach developed for clean systems,21

we define a variational wave function containing Gutzwiller
and long-range Jastrow factors that apply to an uncorrelated
state:

��� = PGJ��0� . �2�

��0� is the ground state of a noninteracting Hamiltonian with
the same hopping parameters as in Eq. �1� but with varia-
tional spin-dependent on-site energies �̃i� to be determined
by minimizing the total energy. A paramagnetic wave func-
tion is obtained by forcing �̃i,↑= �̃i,↓, while, to assess magne-
tism, we allow for �̃i,↑� �̃i,↓. PG=exp��igini

2� is a Gutzwiller
correlator that depends on the site-dependent parameters gi’s,
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while J=exp�1 /2�i�jvi,j�ni−1��nj −1�� is a Jastrow factor.
The latter one spatially correlates valence fluctuations, �ni
=ni−1, on different sites, binding those with �ni�nj �0 and
unbinding those with �ni�nj �0. This fact has been shown to
be crucial to describe a Mott transition in clean systems.21

We shall assume that vij is translationally invariant, which
makes the numerical calculations feasible but neglects any
clustering effects. All variational parameters, i.e., �̃i,�, gi, and
vi,j, are optimized to minimize the variational energy by the
Monte Carlo technique of Ref. 23.

As discussed in Ref. 21, it is possible to discriminate
variationally metals from Mott insulators by looking to
the equal-time density-density structure factor Nq
= ���nqn−q��� / �� ���, where nq is the Fourier transform of
the electron density ni. Indeed, Nq	�q� implies the existence
of gapless modes, while Nq	�q�2 indicates that charge exci-
tations are gapped. Moreover, there is a tight connection be-
tween the small q behavior of Nq and the Fourier transform
of the Jastrow factor vq, namely, vq	1 / �q� for a metal and
vq	1 / �q�2 for an insulator.21 This distinction should equally
work in Eq. �1� after disorder average. However, particular
care must be taken to interpret Nq in a disordered system,
where the structure factor includes a disconnected term,
Nq

disc= �nq��n−q� �where the quantum average is taken at fixed
disorder configuration and the overbar indicates the disorder
average�, as well as a connected one, i.e., Nq

conn=Nq−Nq
disc.

For a clean system, the disconnected term gives rise to the
elastic Bragg peaks. On the contrary, in the presence of weak
disorder Nq

disc is finite for any finite momentum q, whereas
Nq

conn	�q�, indicating the absence of a gap in the spectrum of
charge-density fluctuations.24

We start our analysis with the case of nearest-neighbor
hopping only by using a paramagnetic wave function,
namely, imposing �̃i,↑= �̃i,↓. In Fig. 1, we show the variational
Nq

conn and the Fourier transform of the optimized Jastrow
potential vq for different values of the interaction U and
D / t=5. We take such a large value of D for two reasons.
First of all, a reliable calculation requires a localization

length that, at least at U=0, is within the numerically acces-
sible system sizes. Furthermore, we expect that, should a
metallic phase exist, it would intrude between the Anderson
insulator and the Mott insulator, hence in the region of pa-
rameters where the competition between Anderson and Mott
localization phenomena is maximum. Since in the clean case
the paramagnetic Mott transition occurs at Uc

Mott=8.5	0.5,25

we expect that a sizable D is needed to uncover the afore-
mentioned competition. It could well happen that a metallic
phase is instead confined at weak U and D within the Ander-
son insulating phase, while, the large U transition is always
between an Anderson insulator and a Mott one. However,
this possibility is outside a reliable finite-size numerical ap-
proach.

Going back to our variational calculation, we note that a
clear change in the behavior of the wave function occurs at
Uc

Mott / t=11.5	0.5. For small values of U, Nq
conn	�q� and

vq	1 / �q�, whereas Nq
conn	�q�2 and vq	1 / �q�2 for large U.

The latter behavior is symptomatic of the presence of a
charge gap, hence of a Mott insulating behavior.21 We note
that the increase in Uc with respect to the clean case25 indi-
cates that disorder does compete with U. It should be empha-
sized that, with respect to the clean model, for U�Uc

Mott,
Nq

conn	�q� is not associated to a metallic behavior but only to
a gapless spectrum, also characteristic of an Anderson insu-
lator. Remarkably, we find that the Mott and Anderson insu-
lators can also be discriminated through the behavior of the
limq→0Nq

disc. In Fig. 1 we plot this quantity for different val-
ues of U, demonstrating that it is finite in the Anderson in-
sulator, whereas it vanishes in the Mott phase. This identifies
a simple and variationally accessible order parameter for the
Anderson-Mott transition.

We note that the linear slope of Nq
conn has a nonmonotonic

behavior as a function of U, showing a peak for U / t	7 that
indicates an accumulation of low-energy states around the
Fermi energy. The same qualitative behavior is also present
in the fluctuations of the local densities, �n2=1 /N�i��ni

2�
− �ni�2� �see Fig. 1� which might indicate an increase in me-
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FIG. 1. �Color online� �a� Con-
nected term of the density-density
correlation function Nq

conn divided
by �q�. �b� Jastrow parameters vq

multiplied by �q�2. �c� Discon-
nected term of the density-density
correlation function Nq

disc as a
function of U. �d� Fluctuations of
the on-site variational energies 
�

and of the local densities. All
calculations have been done for
D / t=5.
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tallicity. However, as shown in Fig. 1, although the fluctua-
tions of the on-site variational disorder 
�

2=1 /N�i�̃i
2

− �1 /N�i�̃i�2 decrease upon increasing U, they stay finite no
matter how strong U is. Therefore, the single-particle eigen-
states of the variational Hamiltonian keep a finite localiza-
tion length. Hence the uncorrelated wave function ��0� al-
ways describes an Anderson insulator below the Mott
transition. A key question is whether the action of the
Gutzwiller correlator and the Jastrow factor could turn a lo-
calized ��0� into a delocalized ���. Since the variational
method does not give access to dynamical quantities such as
dc conductivity, we have no definite answer to this intriguing
question. Nevertheless, we tend to believe that such a trans-
mutation of a localized ��0� into a delocalized ��� is un-
likely.

Let us now move to the more interesting case in which we
allow magnetism in the variational wave function, which
amounts to permit �̃i,↑� �̃i,↓. In this case, the ground state
may acquire a finite local magnetization on each site mi
=ni,↑−ni,↓. A magnetically ordered phase will have a finite
value of the total magnetization M =1 /N� je

ıRjQmj for a suit-
able momentum Q, such as, for instance, Q= �� ,�� for the
Néel state. In the presence of disorder, a finite value Uc

AF

is needed to have long-range antiferromagnetic order. We
find that, also in presence of a small t�, Uc

AF�Uc
Mott, giving

rise to an extended region with antiferromagnetic order and
finite compressibility �i.e., a vanishing charge gap�. These
results are in agreement with previous mean-field
calculations,15,26,27 although the latter ones overestimate the
extension of the magnetic phase. In Fig. 2, we show the
results for t�=0 either by fixing D / t=5 and varying U �for
which Uc

AF / t=6.5	0.5 and Uc
Mott / t=10.5	0.5� or by fixing

U / t=4 and changing D �for which Dc
Mott / t=1	0.5 and

Dc
AF / t=2.5	0.5�. We remark that our wave function is more

robust against long-range magnetism and slightly more com-
pressible than the Hartree-Fock one �see Fig. 2�. One could
take these facts as another signal of a tendency toward delo-
calization, induced unexpectedly by the action of the Jastrow
and Gutzwiller correlators. Once again we are led to face the
question of whether an uncorrelated and localized ��0� could
give rise, after projection, to a delocalized ���.

The onset of antiferromagnetism is preceded by a mag-
netically disordered phase �i.e., M =0� in which local mo-
ments appear. In Fig. 3, the patterns of the local density �ni�
and local magnetization �mi� are shown for a typical realiza-
tion of disorder. For U / t=4, the ground state is an Anderson
insulator with a large number of empty and doubly occupied
sites with mi	0. However, some sites have finite magneti-
zation, but they are not spatially correlated. Hence long-
range magnetism is absent. We interpret these magnetic sites
as local moments. When the electron interaction U increases,
the number of magnetic sites increases rapidly and the local
moments eventually display the typical staggered pattern of
Néel order. Nevertheless, charge excitations are still gapless,
with Nq

conn	�q�. For U / t=12 the system is a gapped insulator
with antiferromagnetic order and a vanishing compressibil-
ity. Variationally, the charge gap opens by the combined ef-
fect of the Jastrow correlations, i.e., vq	1 / �q�2, and the finite
antiferromagnetic gap in the mean-field Hamiltonian �due to
staggered �̃i,�’s�.

In the presence of a large frustrating hopping t� / t�0.9 we
find evidence of a spin-glass behavior. In the large U regime,
the optimal wave function displays magnetic long-range or-
der with Q= �� ,0� or �0,��. However, the energy landscape
contains other local minima very close in energy in which
most of the sites of the lattice have a net magnetization but
an overall vanishing magnetic order, a “glassy” spin pattern
�see Fig. 4�. These solutions are incompressible, i.e., Nq

disc
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FIG. 2. �Color online� Staggered magnetization M for Q
= �� ,�� and compressibility fluctuations Nq

disc as a function of U for
disorder D / t=5 �upper panel� and as a function of D for U / t=4
�bottom panel�. In the bottom panel, we also report the results of M
for the unprojected wave function ��0� �upper curve�. Fluctuations
of the on-site variational energies 
� and of the local densities
�middle panel�. Calculations have been done for N=98 and error
bars indicate the average over different realizations of disorder.
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FIG. 3. Local density �ni� �upper panels� and local magnetiza-
tion �mi� �lower panels� for a given disorder realization with D / t
=5 and different values of U / t. The black contour shows the el-
ementary cell of the lattice which is repeated to mimic the infinite
lattice with periodic boundary conditions.
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	0, and therefore may be viewed as disordered Mott insu-
lators. By decreasing the interaction strength U, these meta-
stable states turn compressible, still having a large number of
local moments. However, the actual variational minimum
shows, as before, a transition from a Mott to an Anderson

insulator, both magnetically ordered, followed, at lower U,
by a further transition into a paramagnetic Anderson insula-
tor. The only role of t� is to shrink the region in which a
magnetic Anderson insulator is stable.

In conclusion, we have shown that a relatively simple
variational wave function is able to describe the Anderson-
insulator to Mott-insulator transition in two dimensions. In
the paramagnetic sector, this phase transition is continuous,
in agreement with dynamical mean-field theory.17,19 When
spontaneous spin symmetry breaking is allowed, we find two
successive transitions: the first from a paramagnetic Ander-
son insulator to a magnetic one, followed by a transition
from a magnetic Anderson insulator to a magnetic Mott in-
sulator. Upon increasing frustration, the stability region of
the magnetic Anderson insulator decreases. In general, the
paramagnetic Anderson insulator develops local magnetic
moments, but we do not find any clear-cut evidence, at least
within the limits of our variational approach, of a truly me-
tallic behavior induced by interaction.
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